КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ/ДИФФЕРЕНЦИРОВАННОМУ ЗАЧЕТУ ПО УЧЕБНЫМ ДИСЦИПЛИНАМ

ОДБ.04. Математика: Алгебра и начала математического анализа ОДБ.05. Математика: Геометрия

по профессии СПО 09.01.03 Оператор информационных систем и ресурсов

Теоретические вопросы к ДЗ:

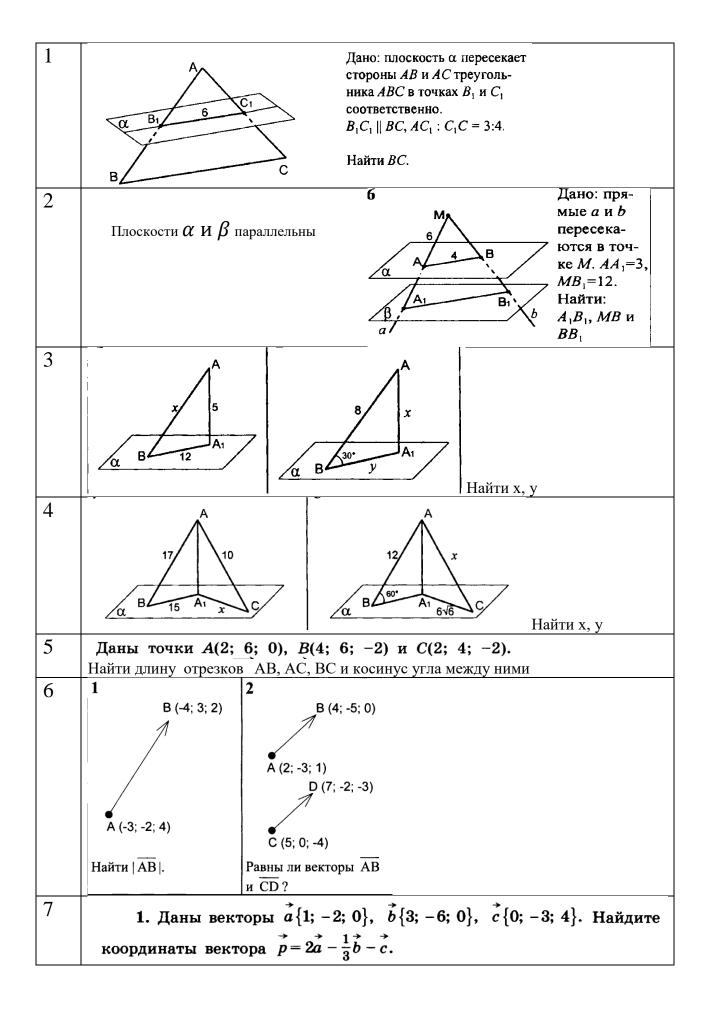
І. ДИФФЕРЕНЦИРОВАННЫЙ ЗАЧЕТ КОМПЛЕКСНЫЙ

Теоретические вопросы к дифференцированному зачету:

Алгебра и начала математического анализа

- 1. Определения синуса, косинуса, тангенса, котангенса любого угла.
- 2. Соотношения между тригонометрическими функциями одного и того же аргумента. Умение находить значения одной тригонометрической функции через другую функцию того же аргумента.
- 3. Формулы приведения.
- 4. Формулы сложения. Формулы суммы и разности тригонометрических функций.
- 5. Формулы двойного аргумента и половинного аргумента.
- 6. Основные свойства и графики тригонометрических функций y=sinx, y=cosx, y=tgx, y=ctgx.
- 7. Простейшие тригонометрические уравнения.
- 8. Понятие о производной. Правила вычисления производных: производная суммы, произведения; частного.
- 9. Нахождение производных элементарных функций.
- 10. Производные тригонометрических функций.
- 11. Применение производной к исследованию функций:
- 11.1 Возрастание и убывание функций
- 11.2 Критические точки, максимумы и минимумы
- 11.3 Наибольшее и наименьшее значения функции на промежутке

Геометрия


- 1. Аксиомы стереометрии и их простейшие следствия.
- 2. Параллельные прямые в пространстве. Признак параллельности прямых.
- 3. Признак параллельности прямой и плоскости

- 4. Признак параллельности плоскостей
- 5. Свойства параллельных плоскостей.
- 6. Признак перпендикулярности прямой и плоскости
- 7. Перпендикуляр и наклонная. Проекция наклонной. Теорема Пифагора.
- 8. Теорема о трех перпендикулярах.
- 9. Декартовы координаты в пространстве.
- 10. Простейшие задачи в координатах:
- 10.1 Расстояние между двумя точками (нахождение длины отрезка)
- 10.2 Координаты середины отрезка.
- 10.3 Координаты вектора, модуль вектора.
- 10.4 Действия с векторами: сложение, вычитание, умножение вектора на число, скалярное произведение векторов.

Практические задания к ДЗ:

	Алгебра и начала математического анализа
1	Упростите выражение:
1	
	a) $\frac{1}{\cos^2 t} - 1$;
	6) $\frac{1-\sin^2 t}{\cos^2 t}$; $\frac{1-\sin^2 t}{1-\cos^2 t} + \operatorname{tg} t \cdot \operatorname{ctg} t$;
2	Упростите выражение:
	a) $\sin\left(\frac{\pi}{2} - t\right)$; B) $\cos\left(\frac{3\pi}{2} + t\right)$
	6) $\cos(2\pi - t)$; Γ $\sin(\pi + t)$.
3	Вычислите:
	a) $\sin 77^{\circ} \cos 17^{\circ} - \sin 13^{\circ} \cos 73^{\circ}$;
	б) cos 125° cos 5° + sin 55° cos 85°. Упростите выражение:
	0) $\cos 125 \cos 5 + \sin 55 \cos 55$. 1 1 1 1 1 1 1 1 1 1
4	Вычислите:
	a) $2 \sin 15^{\circ} \cos 15^{\circ}$; B) $\cos^2 15^{\circ} - \sin^2 15^{\circ}$;
5	Найдите $\cos x$, если $\sin x = -\frac{15}{17}$, $\pi < x < \frac{3\pi}{2}$
	Или:
	Hайдите $\sin x$, если
	$\cos x = \frac{8}{17}, -\frac{\pi}{2} < x < 0.$
6	
6	Решите уравнение:
	a) $\cos t = \frac{1}{2}$; B) $\cos t = 1$;

	Или:
	Решите уравнение:
	a) $\sin t = \frac{\sqrt{3}}{2}$; B) $\sin t = 1$;
	Или:
	Решите уравнение:
	a) $tg x = 1;$
	$\text{6) tg } x = -\frac{\sqrt{3}}{3};$
7	Найдите корни уравнения $2\cos x + \sqrt{2} = 0$, принадлежа-
	щие отрезку $[0; 2\pi]$.
	Или:
	Pешите уравнение $\cos^2 x + \cos x = -\sin^2 x$.
8	Найдите производную функции:
	a) $y = x^3 + 2x^5$; B) $y = x^3 + 4x^{100}$;
	$y=\frac{1}{r}+4x;$
	$y = \cos x + 2x;$
	$y = 3 \sin x + \cos x; y = -2 \sqrt{x} - \frac{1}{x};$
9	Найдите промежутки возрастания функции
	$y = 2x^3 - 3x^2 - 36x.$
	Или:
	Найдите точки экстремума функции
	$f(x) = 2x^3 - 3x^2 - 1.$
	Или:
	Найдите наименьшее значение функции $f(x) = 3x^2 + 18x + 7$ на промежутке $[-5; -1]$.
10	Найдите значение производной функции $y=rac{x}{x+1}$
	в точке $x_0 = -2$.
	Геометрия

8	Точка M — середина отрезка AB . Найдите координаты: а) точки M , если A (0; 3; -4), B (-2; 2; 0); б) точки B , если A (14; -8; 5), M (3; -2; -7); в) точки A , если B (0; 0; 2), M (-12; 4; 15).
9	Даны точки A (0; 1; 2), B ($\sqrt{2}$; 1; 2), C ($\sqrt{2}$; 2; 1) и D (0; 2; Докажите, что $ABCD$ — квадрат.

ІІ. ЭКЗАМЕН КОМПЛЕКСНЫЙ

Теоретические вопросы к ЭКЗАМЕНУ:

Алгебра и начала математического анализа

- 1. Решение простейших задач с практическим содержанием
- 2. Соотношения между тригонометрическими функциями одного и того же аргумента. Умение находить значения одной тригонометрической функции через другую функцию того же аргумента.
- 3. Определение свойств функции с помощью её графика.
- 4. Решение рациональных неравенств методом интервалов.
- 5. Решение тригонометрических уравнений.
- 6. Нахождение производных элементарных функций.
- 7. Применение производной к исследованию функций:
- 7.1 Возрастание и убывание функций.
- 7.2 Критические точки, максимумы и минимумы.
- 7.3 Наибольшее и наименьшее значение функции.
- 8. Механический и геометрический смыслы производной.
- 9. Корень п-й степени и его свойства.
- 10. Преобразование выражений, содержащих степень и корни.
- 11. Решение иррациональных уравнений.
- 12. Решение показательных уравнений и неравенств.
- 13. Логарифмы и их свойства.
- 14. Решение логарифмических уравнений и неравенств.
- 15. Производная и первообразная показательной и логарифмической функций.
- 16. Классическое определение вероятности равновозможных событий. Теоремы о вероятностях.

Геометрия

- 1. Свойства простейших многоугольников. Теоремы синусов и косинусов. Теорема Пифагора.
- 2. Формулы нахождения площадей простейших многоугольников и круга.
- 3. Перпендикуляр и наклонная. Проекция наклонной.
- 4. Многогранники. Призма, пирамида. Правильная призма. Правильная пирамида.

- 5. Прямоугольный параллелепипед и куб. Свойство диагонали прямоугольного параллелепипеда. Объем и полная поверхность прямоугольного параллелепипеда и куба.
- 6. Объем прямой призмы. Формулы боковой и полной поверхностей прямой призмы.
- 7. Объем пирамиды. Формулы боковой и полной поверхностей правильной пирамиды.
- 8. Круглые тела, тела вращения. Цилиндр, конус, шар, сфера.
- 9. Объем и площадь боковой и полной поверхностей цилиндра и конуса.
- 10. Формулы объема шара и площади сферы.

Практические задания к экзамену:

Примерный вариант экзаменационной работы для проведения комплексного экзамена по математике

Обязательная часть

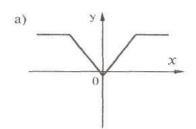
При выполнении заданий 1-8 запишите ход решения и полученный ответ

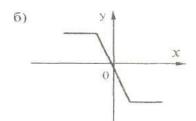
- 1. (1 балл) Билет на автобус стоит 30 рублей. Определите, на сколько поездок хватит 100 рублей, если стоимость билета снизят на 10%.
- 2. (1 балл) Определите, сколько банок краски по 3 кг необходимо купить для покраски пола в спортивном зале площадью 6х12м², если на 1м² расходуется 300 граммов краски.
- 3. (1 балл) В среднем из 500 фонариков, поступивших в продажу, 5 неисправны. Найдите вероятность того, что купленный фонарик окажется исправным.
- 4. (1 балл) Вычислите значение выражения $9^{\frac{3}{2}} + 27^{\frac{2}{3}} + \sqrt{81}$.

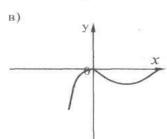
Или:

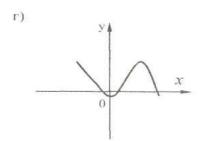
а)
$$\frac{a^5 \cdot a^{-8}}{a^{-2}}$$
 при $a = 6$;

б)
$$\frac{b^{-9}}{(b^2)^{-3}}$$
 при $b=\frac{1}{2}$;

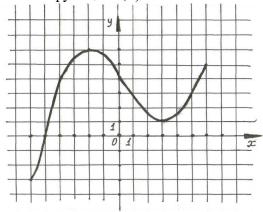

- 5. (1 балл) Найдите значение $\cos \alpha$, если известно, что $\sin \alpha = \frac{1}{3}$ и $\alpha \in I$ четверти.
- 6. (1 балл) Решите уравнение $5^{5x+1} = 25^{2x}$.
- 7. (1 балл) Вычислите значение выражения $\log_2 8 + \log_5 125 + \lg 100 + \lg 1$. Или:


Вычислите:


a)
$$\log_6 12 + \log_6 3$$
;

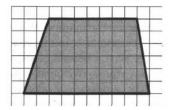

$$\begin{array}{c} \log_{_{12}}216-\log_{_{12}}1{,}5 \\ \\ \text{5)} \end{array}$$
 $7\cdot 10^{\log_{_{10}}3}$.

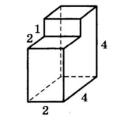
- 8. (1 балл) Решите уравнение $\log_2 (3x + 17) = 4$.
- 9. (1 балл) Определите, какой из ниже приведенных графиков соответствует четной функции. Отметьте его знаком «+» и кратко поясните, почему.



10.

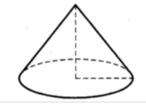
Используя график функции y = f(x) (см. рис. ниже), определите и запишите ответ:


- 10. (1 балл) наименьшее и наибольшее значения функции;
- 11. (1 балл) промежутки возрастания и убывания функции;
- 12. (1 балл) при каких значениях x функция $f(x) \ge 0$.


При выполнении заданий 13-18 запишите ход решения и полученный ответ

- 13. (1 балл) От электрического столба высотой 6 м к дому, высота которого 3 м натянут кабель. Определите длину кабеля, если расстояние между домом и столбом 4 м. (Сделайте чертеж) Или:
- 14. (1 балл) Тело движется по закону: $S(t) = x^2 7x + 3$. Определите, в какой момент времени скорость будет равна 3.

15. (1 балл) План местности разбит на клетки. Каждая клетка обозначает квадрат 10м*10м. Найдите площадь участка. Ответ дайте в м².



- 16. (1 балл) Решите уравнение $\frac{1}{2}\sqrt{x+1} = 4$
- 17. (1 балл) Решите уравнение $\sin^2 x + \sin x = -\cos^2 x$.
- 18. (1 балл) Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые)

Или:

. Диаметр основания конуса равен 18, а длина образующей — 15. Найдите высоту конуса.

Дополнительная часть

При выполнении заданий 19-22 запишите ход решения и полученный ответ

- 19. (3 балла) Найдите промежутки убывания функции $f(x) = 2x^3 3x^2 36x$.
- 20. (3 балла) Укажите все натуральные решения неравенства

$$\log_{\frac{1}{3}}(x^2-6x+8) \ge -1.$$

- 21. (3 балла) Найдите решение уравнения: $2\sin^2 x 5\cos x 5 = 0$, удовлетворяющее условию $\sin x > 0$.
- 22. (3 балла) Основанием прямой призмы является ромб со стороной 12 см и углом 60°. Меньшее из диагональных сечений призмы является квадратом. Найдите объем призмы.